A.1 矩陣乘法
這是在 6.2.1 節的矩陣乘法的完整基準測試程式。有關使用的 intrinsic 函式的細節,請讀者參閱 Intel 的參考手冊。
#include <stdlib.h>
#include <stdio.h>
#include <emmintrin.h>
#define N 1000
double res[N][N] __attribute__ ((aligned (64)));
double mul1[N][N] __attribute__ ((aligned (64)));
double mul2[N][N] __attribute__ ((aligned (64)));
#define SM (CLS / sizeof (double))
int
main (void)
{
// ... Initialize mul1 and mul2
int i, i2, j, j2, k, k2;
double *restrict rres;
double *restrict rmul1;
double *restrict rmul2;
for (i = 0; i < N; i += SM)
for (j = 0; j < N; j += SM)
for (k = 0; k < N; k += SM)
for (i2 = 0, rres = &res[i][j], rmul1 = &mul1[i][k]; i2 < SM;
++i2, rres += N, rmul1 += N)
{
_mm_prefetch (&rmul1[8], _MM_HINT_NTA);
for (k2 = 0, rmul2 = &mul2[k][j]; k2 < SM; ++k2, rmul2 += N)
{
__m128d m1d = _mm_load_sd (&rmul1[k2]);
m1d = _mm_unpacklo_pd (m1d, m1d);
for (j2 = 0; j2 < SM; j2 += 2)
{
__m128d m2 = _mm_load_pd (&rmul2[j2]);
__m128d r2 = _mm_load_pd (&rres[j2]);
_mm_store_pd (&rres[j2],
_mm_add_pd (_mm_mul_pd (m2, m1d), r2));
}
}
}
// ... use res matrix
return 0;
}
迴圈的結構跟 6.2.1 節的最終型態幾乎完全相同。唯一的大改變是 rmul1[k2]
值的載入被拉出內部迴圈了,因為我們必須建立一個擁有二個相同元素值的向量。這即是 _mm_unpacklo_pd()
intrinsic 函式所為。
其餘唯一值得注意的事情是,我們明確地對齊了三個陣列,以令我們預期會位在同個快取行的值真的在那裡找到。